List of finite simple groups

Non-infinite sets with associative invertible operations, unbreakable into smaller such sets / From Wikipedia, the free encyclopedia

In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type, or one of 26 sporadic groups.

The list below gives all finite simple groups, together with their order, the size of the Schur multiplier, the size of the outer automorphism group, usually some small representations, and lists of all duplicates.

Summary

The following table is a complete list of the 18 families of finite simple groups and the 26 sporadic simple groups, along with their orders. Any non-simple members of each family are listed, as well as any members duplicated within a family or between families. (In removing duplicates it is useful to note that no two finite simple groups have the same order, except that the group A8 = A_3(2) and _A_2(4) both have order 20160, and that the group _Bn(q) has the same order as Cn(q) for q odd, n > 2. The smallest of the latter pairs of groups are _B_3(3) and _C_3(3) which both have order 4585351680.)

There is an unfortunate conflict between the notations for the alternating groups An and the groups of Lie type An(q). Some authors use various different fonts for An to distinguish them. In particular, in this article we make the distinction by setting the alternating groups An in Roman font and the Lie-type groups An(q) in italic.

In what follows, n is a positive integer, and q is a positive power of a prime number p, with the restrictions noted. The notation (a,b) represents the greatest common divisor of the integers a and b.

More information , ...

Class Family Order Exclusions Duplicates
Cyclic groups Zp p prime None None
Alternating groups An n > 4 None * A5 ≃ _A_1(4) ≃ _A_1(5)
A6 ≃ _A_1(9)
A8 ≃ _A_3(2)
Classical Chevalley groups A__n(q) _A_1(2), _A_1(3) - _A_1(4) ≃ _A_1(5) ≃ A5
_A_1(7) ≃ _A_2(2)
_A_1(9) ≃ A6
_A_3(2) ≃ A8
B__n(q) n > 1 _B_2(2) * Bn(2m) ≃ Cn(2m)
_B_2(3) ≃ 2_A_3(22)
C__n(q) n > 2 None Cn(2m) ≃ Bn(2m)
D__n(q) n > 3 None None
Exceptional Chevalley groups E_6(_q) None None
E_7(_q) None None
E_8(_q) None None
F_4(_q) None None
G_2(_q) _G_2(2) None
Classical Steinberg groups 2A__n(q_2) _n > 1 2_A_2(22) 2_A_3(22) ≃ _B_2(3)
2Dn(q_2) _n > 3 None None
Exceptional Steinberg groups 2_E_6(_q_2) None None
3_D_4(_q_3) None None
Suzuki groups 2B_2(_q) q = 22n+1 None None
Ree groups + Tits group 2F_4(_q) q = 22n+1 None None
2_F_4(2)′ 212(26 + 1)(24 − 1)(23 + 1)(2 − 1)/2 = 17971200
2G_2(_q) q = 32n+1 None None
Mathieu groups M11 7920
M12 95040
M22 443520
M23 10200960
M24 244823040
Janko groups J1 175560
J2 604800
J3 50232960
J4 86775571046077562880
Conway groups Co3 495766656000
Co2 42305421312000
Co1 4157776806543360000
Fischer groups Fi22 64561751654400
Fi23 4089470473293004800
Fi24′ 1255205709190661721292800
Higman–Sims group HS 44352000
McLaughlin group McL 898128000
Held group He 4030387200
Rudvalis group Ru 145926144000
Suzuki sporadic group Suz 448345497600
O'Nan group O'N 460815505920
Harada–Norton group HN 273030912000000
Lyons group Ly 51765179004000000
Thompson group Th 90745943887872000
Baby Monster group B 4154781481226426191177580544000000
Monster group M 808017424794512875886459904961710757005754368000000000

Cyclic groups, Zp

Simplicity: Simple for p a prime number.

Order: p

Schur multiplier: Trivial.

Outer automorphism group: Cyclic of order p − 1.

Other names: Z/p_Z, C_p

Remarks: These are the only simple groups that are not perfect.

Alternating groups, An, n > 4

Simplicity: Solvable for n < 5, otherwise simple.

Order: n!/2 when n > 1.

Schur multiplier: 2 for n = 5 or n > 7, 6 for n = 6 or 7; see Covering groups of the alternating and symmetric groups

Outer automorphism group: In general 2. Exceptions: for n = 1, n = 2, it is trivial, and for n = 6, it has order 4 (elementary abelian).

Other names: Altn.

Isomorphisms: A1 and A2 are trivial. A3 is cyclic of order 3. A4 is isomorphic to _A_1(3) (solvable). A5 is isomorphic to _A_1(4) and to _A_1(5). A6 is isomorphic to _A_1(9) and to the derived group _B_2(2)′. A8 is isomorphic to _A_3(2).

Remarks: An index 2 subgroup of the symmetric group of permutations of n points when n > 1.

Groups of Lie type

Notation: n is a positive integer, q > 1 is a power of a prime number p, and is the order of some underlying finite field. The order of the outer automorphism group is written as dfg, where d is the order of the group of "diagonal automorphisms", f is the order of the (cyclic) group of "field automorphisms" (generated by a Frobenius automorphism), and g is the order of the group of "graph automorphisms" (coming from automorphisms of the Dynkin diagram). The outer automorphism group is often, but not always, isomorphic to the semidirect product where all these groups are cyclic of the respective orders d, f, g, except for type , odd, where the group of order is , and (only when ) , the symmetric group on three elements. The notation (a,b) represents the greatest common divisor of the integers a and b.

Chevalley groups, An(q), Bn(q) n > 1, Cn(q) n > 2, Dn(q) n > 3

More information , ...

Chevalley groups, An(q) linear groups Chevalley groups, Bn(q) n > 1 orthogonal groups Chevalley groups, Cn(q) n > 2 symplectic groups Chevalley groups, Dn(q) n > 3 orthogonal groups
Simplicity _A_1(2) and _A_1(3) are solvable, the others are simple. _B_2(2) is not simple but its derived group _B_2(2)′ is a simple subgroup of index 2; the others are simple. All simple All simple
Order
Schur multiplier For the simple groups it is cyclic of order (n+1,q−1) except for _A_1(4) (order 2), _A_1(9) (order 6), _A_2(2) (order 2), _A_2(4) (order 48, product of cyclic groups of orders 3, 4, 4), _A_3(2) (order 2). (2,q−1) except for _B_2(2) = S6 (order 2 for _B_2(2), order 6 for _B_2(2)′) and _B_3(2) (order 2) and _B_3(3) (order 6). (2,q−1) except for _C_3(2) (order 2). The order is (4,qn−1) (cyclic for n odd, elementary abelian for n even) except for _D_4(2) (order 4, elementary abelian).
Outer automorphism group (2,q−1)⋅f⋅1 for n = 1; (n+1,q−1)⋅f⋅2 for n > 1, where q = pf (2,q−1)⋅f⋅1 for q odd or n > 2; (2,q−1)⋅f⋅2 for q even and n = 2, where q = pf (2,q−1)⋅f⋅1, where q = pf (2,q−1)2⋅fS_3 for _n = 4, (2,q−1)2⋅f⋅2 for n > 4 even, (4,qn−1)⋅f⋅2 for n odd, where q = pf, and S3 is the symmetric group of order 3! on 3 points.
Other names Projective special linear groups, PSLn+1(q), L__n+1(q), PSL(n + 1,q) O2n+1(q), Ω2n+1(q) (for q odd). Projective symplectic group, PSp2n(q), PSpn(q) (not recommended), S_2_n(q), Abelian group (archaic). O2n+(q), PΩ2n+(q). "Hypoabelian group" is an archaic name for this group in characteristic 2.
Isomorphisms _A_1(2) is isomorphic to the symmetric group on 3 points of order 6. _A_1(3) is isomorphic to the alternating group A4 (solvable). _A_1(4) and _A_1(5) are both isomorphic to the alternating group A5. _A_1(7) and _A_2(2) are isomorphic. _A_1(8) is isomorphic to the derived group 2_G_2(3)′. _A_1(9) is isomorphic to A6 and to the derived group _B_2(2)′. _A_3(2) is isomorphic to A8. Bn(2m) is isomorphic to Cn(2m). _B_2(2) is isomorphic to the symmetric group on 6 points, and the derived group _B_2(2)′ is isomorphic to _A_1(9) and to A6. _B_2(3) is isomorphic to 2_A_3(22). Cn(2m) is isomorphic to Bn(2m)
Remarks These groups are obtained from the general linear groups GLn+1(q) by taking the elements of determinant 1 (giving the special linear groups SLn+1(q)) and then quotienting out by the center. This is the group obtained from the orthogonal group in dimension 2n + 1 by taking the kernel of the determinant and spinor norm maps. B_1(_q) also exists, but is the same as A_1(_q). B_2(_q) has a non-trivial graph automorphism when q is a power of 2. This group is obtained from the symplectic group in 2n dimensions by quotienting out the center. C_1(_q) also exists, but is the same as A_1(_q). C_2(_q) also exists, but is the same as B_2(_q). This is the group obtained from the split orthogonal group in dimension 2n by taking the kernel of the determinant (or Dickson invariant in characteristic 2) and spinor norm maps and then killing the center. The groups of type D_4 have an unusually large diagram automorphism group of order 6, containing the triality automorphism. _D_2(_q) also exists, but is the same as A_1(_qA_1(_q). D_3(_q) also exists, but is the same as A_3(_q).

Chevalley groups, E_6(_q), E_7(_q), E_8(_q), F_4(_q), G_2(_q)

More information Chevalley groups, E6(q), Chevalley groups, E7(q) ...

Chevalley groups, E_6(_q) Chevalley groups, E_7(_q) Chevalley groups, E_8(_q) Chevalley groups, F_4(_q) Chevalley groups, G_2(_q)
Simplicity All simple All simple All simple All simple _G_2(2) is not simple but its derived group _G_2(2)′ is a simple subgroup of index 2; the others are simple.
Order q_36(_q_12−1)(_q_9−1)(_q_8−1)(_q_6−1)(_q_5−1)(_q_2−1)/(3,_q−1) q_63(_q_18−1)(_q_14−1)(_q_12−1)(_q_10−1)(_q_8−1)(_q_6−1)(_q_2−1)/(2,_q−1) _q_120(_q_30−1)(_q_24−1)(_q_20−1)(_q_18−1)(_q_14−1)(_q_12−1)(_q_8−1)(_q_2−1) _q_24(_q_12−1)(_q_8−1)(_q_6−1)(_q_2−1) _q_6(_q_6−1)(_q_2−1)
Schur multiplier (3,q−1) (2,q−1) Trivial Trivial except for _F_4(2) (order 2) Trivial for the simple groups except for _G_2(3) (order 3) and _G_2(4) (order 2)
Outer automorphism group (3,q−1)⋅f⋅2, where q = pf (2,q−1)⋅f⋅1, where q = pf 1⋅f⋅1, where q = pf 1⋅f⋅1 for q odd, 1⋅f⋅2 for q even, where q = pf 1⋅f⋅1 for q not a power of 3, 1⋅f⋅2 for q a power of 3, where q = pf
Other names Exceptional Chevalley group Exceptional Chevalley group Exceptional Chevalley group Exceptional Chevalley group Exceptional Chevalley group
Isomorphisms The derived group _G_2(2)′ is isomorphic to 2_A_2(32).
Remarks Has two representations of dimension 27, and acts on the Lie algebra of dimension 78. Has a representations of dimension 56, and acts on the corresponding Lie algebra of dimension 133. It acts on the corresponding Lie algebra of dimension 248. _E_8(3) contains the Thompson simple group. These groups act on 27-dimensional exceptional Jordan algebras, which gives them 26-dimensional representations. They also act on the corresponding Lie algebras of dimension 52. F_4(_q) has a non-trivial graph automorphism when q is a power of 2. These groups are the automorphism groups of 8-dimensional Cayley algebras over finite fields, which gives them 7-dimensional representations. They also act on the corresponding Lie algebras of dimension 14. G_2(_q) has a non-trivial graph automorphism when q is a power of 3. Moreover, they appear as automorphism groups of certain point-line geometries called split Cayley generalized hexagons.

Steinberg groups, 2An(q_2) _n > 1, 2Dn(q_2) _n > 3, 2_E_6(_q_2), 3_D_4(_q_3)

More information , ...

Steinberg groups, 2An(q_2) _n > 1 unitary groups Steinberg groups, 2Dn(q_2) _n > 3 orthogonal groups Steinberg groups, 2_E_6(_q_2) Steinberg groups, 3_D_4(_q_3)
Simplicity 2_A_2(22) is solvable, the others are simple. All simple All simple All simple
Order q_36(_q_12−1)(_q_9+1)(_q_8−1)(_q_6−1)(_q_5+1)(_q_2−1)/(3,_q+1) _q_12(_q_8+_q_4+1)(_q_6−1)(_q_2−1)
Schur multiplier Cyclic of order (n+1,q+1) for the simple groups, except for 2_A_3(22) (order 2), 2_A_3(32) (order 36, product of cyclic groups of orders 3,3,4), 2_A_5(22) (order 12, product of cyclic groups of orders 2,2,3) Cyclic of order (4,qn+1) (3,q+1) except for 2_E_6(22) (order 12, product of cyclic groups of orders 2,2,3). Trivial
Outer automorphism group (n+1,q+1)⋅f⋅1, where q_2 = _pf (4,qn+1)⋅f⋅1, where q_2 = _pf (3,q+1)⋅f⋅1, where q_2 = _pf 1⋅f⋅1, where q_3 = _pf
Other names Twisted Chevalley group, projective special unitary group, PSUn+1(q), PSU(n + 1, q), Un+1(q), 2An(q), 2An(q, _q_2) 2Dn(q), O2n−(q), PΩ2n−(q), twisted Chevalley group. "Hypoabelian group" is an archaic name for this group in characteristic 2. 2E_6(_q), twisted Chevalley group 3D_4(_q), _D_42(_q_3), Twisted Chevalley groups
Isomorphisms The solvable group 2_A_2(22) is isomorphic to an extension of the order 8 quaternion group by an elementary abelian group of order 9. 2_A_2(32) is isomorphic to the derived group _G_2(2)′. 2_A_3(22) is isomorphic to _B_2(3).
Remarks This is obtained from the unitary group in n + 1 dimensions by taking the subgroup of elements of determinant 1 and then quotienting out by the center. This is the group obtained from the non-split orthogonal group in dimension 2n by taking the kernel of the determinant (or Dickson invariant in characteristic 2) and spinor norm maps and then killing the center. 2_D_2(_q_2) also exists, but is the same as _A_1(_q_2). 2_D_3(_q_2) also exists, but is the same as 2_A_3(_q_2). One of the exceptional double covers of 2E6(22) is a subgroup of the baby monster group, and the exceptional central extension by the elementary abelian group of order 4 is a subgroup of the monster group. 3D4(23) acts on the unique even 26-dimensional lattice of determinant 3 with no roots.

Suzuki groups, 2B_2(22_n+1)

Simplicity: Simple for n ≥ 1. The group 2_B_2(2) is solvable.

Order: q_2 (_q_2 + 1) (_q − 1), where q = 22n+1.

Schur multiplier: Trivial for n ≠ 1, elementary abelian of order 4 for 2_B_2(8).

Outer automorphism group:

  • 1⋅f⋅1,

where f = 2n + 1.

Other names: Suz(22n+1), Sz(22n+1).

Isomorphisms: 2_B_2(2) is the Frobenius group of order 20.

Remarks: Suzuki group are Zassenhaus groups acting on sets of size (22n+1)2 + 1, and have 4-dimensional representations over the field with 22n+1 elements. They are the only non-cyclic simple groups whose order is not divisible by 3. They are not related to the sporadic Suzuki group.

Ree groups and Tits group, 2F_4(22_n+1)

Simplicity: Simple for n ≥ 1. The derived group 2_F_4(2)′ is simple of index 2 in 2_F_4(2), and is called the Tits group, named for the Belgian mathematician Jacques Tits.

Order: q_12 (_q_6 + 1) (_q_4 − 1) (_q_3 + 1) (_q − 1), where q = 22n+1.

The Tits group has order 17971200 = 211 ⋅ 33 ⋅ 52 ⋅ 13.

Schur multiplier: Trivial for n ≥ 1 and for the Tits group.

Outer automorphism group:

  • 1⋅f⋅1,

where f = 2n + 1. Order 2 for the Tits group.

Remarks: Unlike the other simple groups of Lie type, the Tits group does not have a BN pair, though its automorphism group does so most authors count it as a sort of honorary group of Lie type.

Ree groups, 2G_2(32_n+1)

Simplicity: Simple for n ≥ 1. The group 2G_2(3) is not simple, but its derived group _2G2(3)′ is a simple subgroup of index 3.

Order: q_3 (_q_3 + 1) (_q − 1), where q = 32n+1

Schur multiplier: Trivial for n ≥ 1 and for 2_G_2(3)′.

Outer automorphism group:

  • 1⋅f⋅1,

where f = 2n + 1.

Other names: Ree(32n+1), R(32n+1), E2∗(32n+1) .

Isomorphisms: The derived group 2_G_2(3)′ is isomorphic to _A_1(8).

Remarks: 2G_2(32_n+1) has a doubly transitive permutation representation on 33(2n+1) + 1 points and acts on a 7-dimensional vector space over the field with 32n+1 elements.

Sporadic groups

Mathieu groups, M11, M12, M22, M23, M24

More information Mathieu group, M11, Mathieu group, M12 ...

Mathieu group, M11 Mathieu group, M12 Mathieu group, M22 Mathieu group, M23 Mathieu group, M24
Order 24 ⋅ 32 ⋅ 5 ⋅ 11 = 7920 26 ⋅ 33 ⋅ 5 ⋅ 11 = 95040 27 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 = 443520 27 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23 = 10200960 210 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23 = 244823040
Schur multiplier Trivial Order 2 Cyclic of order 12[lower-alpha 1] Trivial Trivial
Outer automorphism group Trivial Order 2 Order 2 Trivial Trivial
Remarks A 4-transitive permutation group on 11 points, and is the point stabilizer of M12 (in the 5-transitive 12-point permutation representation of M12). The group M11 is also contained in M23. The subgroup of M11 fixing a point in the 4-transitive 11-point permutation representation is sometimes called M10, and has a subgroup of index 2 isomorphic to the alternating group A6. A 5-transitive permutation group on 12 points, contained in M24. A 3-transitive permutation group on 22 points, and is the point stabilizer of M23 (in the 4-transitive 23-point permutation representation of M23). The subgroup of M22 fixing a point in the 3-transitive 22-point permutation representation is sometimes called M21, and is isomorphic to PSL(3,4) (i.e. isomorphic to _A_2(4)). A 4-transitive permutation group on 23 points, and is the point stabilizer of M24 (in the 5-transitive 24-point permutation representation of M24). A 5-transitive permutation group on 24 points.

Janko groups, J1, J2, J3, J4

More information Janko group, J1, Janko group, J2 ...

Janko group, J1 Janko group, J2 Janko group, J3 Janko group, J4
Order 23 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 19 = 175560 27 ⋅ 33 ⋅ 52 ⋅ 7 = 604800 27 ⋅ 35 ⋅ 5 ⋅ 17 ⋅ 19 = 50232960 221 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 113 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 37 ⋅ 43 = 86775571046077562880
Schur multiplier Trivial Order 2 Order 3 Trivial
Outer automorphism group Trivial Order 2 Order 2 Trivial
Other names J(1), J(11) Hall–Janko group, HJ Higman–Janko–McKay group, HJM
Remarks It is a subgroup of _G_2(11), and so has a 7-dimensional representation over the field with 11 elements. The automorphism group J2:2 of J2 is the automorphism group of a rank 3 graph on 100 points called the Hall-Janko graph. It is also the automorphism group of a regular near octagon called the Hall-Janko near octagon. The group J2 is contained in _G_2(4). J3 seems unrelated to any other sporadic groups (or to anything else). Its triple cover has a 9-dimensional unitary representation over the field with 4 elements. Has a 112-dimensional representation over the field with 2 elements.

Conway groups, Co1, Co2, Co3

More information Conway group, Co1, Conway group, Co2 ...

Conway group, Co1 Conway group, Co2 Conway group, Co3
Order 221 ⋅ 39 ⋅ 54 ⋅ 72 ⋅ 11 ⋅ 13 ⋅ 23 = 4157776806543360000 218 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11 ⋅ 23 = 42305421312000 210 ⋅ 37 ⋅ 53 ⋅ 7 ⋅ 11 ⋅ 23 = 495766656000
Schur multiplier Order 2 Trivial Trivial
Outer automorphism group Trivial Trivial Trivial
Other names ·1 ·2 ·3, C3
Remarks The perfect double cover Co0 of Co1 is the automorphism group of the Leech lattice, and is sometimes denoted by ·0. Subgroup of Co0; fixes a norm 4 vector in the Leech lattice. Subgroup of Co0; fixes a norm 6 vector in the Leech lattice. It has a doubly transitive permutation representation on 276 points.

Fischer groups, Fi22, Fi23, Fi24′

More information Fischer group, Fi22, Fischer group, Fi23 ...

Fischer group, Fi22 Fischer group, Fi23 Fischer group, Fi24′
Order 217 ⋅ 39 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 = 64561751654400 218 ⋅ 313 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 23 = 4089470473293004800 221 ⋅ 316 ⋅ 52 ⋅ 73 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 23 ⋅ 29 = 1255205709190661721292800
Schur multiplier Order 6 Trivial Order 3
Outer automorphism group Order 2 Trivial Order 2
Other names M(22) M(23) M(24)′, _F_3+
Remarks A 3-transposition group whose double cover is contained in Fi23. A 3-transposition group contained in Fi24′. The triple cover is contained in the monster group.

Higman–Sims group, HS

Order: 29 ⋅ 32 ⋅ 53 ⋅ 7 ⋅ 11 = 44352000

Schur multiplier: Order 2.

Outer automorphism group: Order 2.

Remarks: It acts as a rank 3 permutation group on the Higman Sims graph with 100 points, and is contained in Co2 and in Co3.

McLaughlin group, McL

Order: 27 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11 = 898128000

Schur multiplier: Order 3.

Outer automorphism group: Order 2.

Remarks: Acts as a rank 3 permutation group on the McLaughlin graph with 275 points, and is contained in Co2 and in Co3.

Held group, He

Order: 210 ⋅ 33 ⋅ 52 ⋅ 73 ⋅ 17 = 4030387200

Schur multiplier: Trivial.

Outer automorphism group: Order 2.

Other names: Held–Higman–McKay group, HHM, _F_7, HTH

Remarks: Centralizes an element of order 7 in the monster group.

Rudvalis group, Ru

Order: 214 ⋅ 33 ⋅ 53 ⋅ 7 ⋅ 13 ⋅ 29 = 145926144000

Schur multiplier: Order 2.

Outer automorphism group: Trivial.

Remarks: The double cover acts on a 28-dimensional lattice over the Gaussian integers.

Suzuki sporadic group, Suz

Order: 213 ⋅ 37 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 = 448345497600

Schur multiplier: Order 6.

Outer automorphism group: Order 2.

Other names: Sz

Remarks: The 6 fold cover acts on a 12-dimensional lattice over the Eisenstein integers. It is not related to the Suzuki groups of Lie type.

O'Nan group, O'N

Order: 29 ⋅ 34 ⋅ 5 ⋅ 73 ⋅ 11 ⋅ 19 ⋅ 31 = 460815505920

Schur multiplier: Order 3.

Outer automorphism group: Order 2.

Other names: O'Nan–Sims group, O'NS, O–S

Remarks: The triple cover has two 45-dimensional representations over the field with 7 elements, exchanged by an outer automorphism.

Harada–Norton group, HN

Order: 214 ⋅ 36 ⋅ 56 ⋅ 7 ⋅ 11 ⋅ 19 = 273030912000000

Schur multiplier: Trivial.

Outer automorphism group: Order 2.

Other names: F_5, _D

Remarks: Centralizes an element of order 5 in the monster group.

Lyons group, Ly

Order: 28 ⋅ 37 ⋅ 56 ⋅ 7 ⋅ 11 ⋅ 31 ⋅ 37 ⋅ 67 = 51765179004000000

Schur multiplier: Trivial.

Outer automorphism group: Trivial.

Other names: Lyons–Sims group, LyS

Remarks: Has a 111-dimensional representation over the field with 5 elements.

Thompson group, Th

Order: 215 ⋅ 310 ⋅ 53 ⋅ 72 ⋅ 13 ⋅ 19 ⋅ 31 = 90745943887872000

Schur multiplier: Trivial.

Outer automorphism group: Trivial.

Other names: F_3, _E

Remarks: Centralizes an element of order 3 in the monster. Has a 248-dimensional representation which, when reduced modulo 3, leads to containment in _E_8(3).

Baby Monster group, B

Order:

  • 241 ⋅ 313 ⋅ 56 ⋅ 72 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 31 ⋅ 47
  • = 4154781481226426191177580544000000

Schur multiplier: Order 2.

Outer automorphism group: Trivial.

Other names: _F_2

Remarks: The double cover is contained in the monster group. It has a representation of dimension 4371 over the complex numbers (with no nontrivial invariant product), and a representation of dimension 4370 over the field with 2 elements preserving a commutative but non-associative product.

Fischer–Griess Monster group, M

Order:

  • 246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71
  • = 808017424794512875886459904961710757005754368000000000

Schur multiplier: Trivial.

Outer automorphism group: Trivial.

Other names: _F_1, M1, Monster group, Friendly giant, Fischer's monster.

Remarks: Contains all but 6 of the other sporadic groups as subquotients. Related to monstrous moonshine. The monster is the automorphism group of the 196,883-dimensional Griess algebra and the infinite-dimensional monster vertex operator algebra, and acts naturally on the monster Lie algebra.

Non-cyclic simple groups of small order

More information Order, Factored order ...

Order Factored order Group Schur multiplier Outer automorphism group
60 22 ⋅ 3 ⋅ 5 A5 ≃ _A_1(4) ≃ _A_1(5) 2 2
168 23 ⋅ 3 ⋅ 7 _A_1(7) ≃ _A_2(2) 2 2
360 23 ⋅ 32 ⋅ 5 A6 ≃ _A_1(9) ≃ _B_2(2)′ 6 2×2
504 23 ⋅ 32 ⋅ 7 _A_1(8) ≃ 2_G_2(3)′ 1 3
660 22 ⋅ 3 ⋅ 5 ⋅ 11 _A_1(11) 2 2
1092 22 ⋅ 3 ⋅ 7 ⋅ 13 _A_1(13) 2 2
2448 24 ⋅ 32 ⋅ 17 _A_1(17) 2 2
2520 23 ⋅ 32 ⋅ 5 ⋅ 7 A7 6 2
3420 22 ⋅ 32 ⋅ 5 ⋅ 19 _A_1(19) 2 2
4080 24 ⋅ 3 ⋅ 5 ⋅ 17 _A_1(16) 1 4
5616 24 ⋅ 33 ⋅ 13 _A_2(3) 1 2
6048 25 ⋅ 33 ⋅ 7 2_A_2(9) ≃ _G_2(2)′ 1 2
6072 23 ⋅ 3 ⋅ 11 ⋅ 23 _A_1(23) 2 2
7800 23 ⋅ 3 ⋅ 52 ⋅ 13 _A_1(25) 2 2×2
7920 24 ⋅ 32 ⋅ 5 ⋅ 11 M**11** 1 1
9828 22 ⋅ 33 ⋅ 7 ⋅ 13 _A_1(27) 2 6
12180 22 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 29 _A_1(29) 2 2
14880 25 ⋅ 3 ⋅ 5 ⋅ 31 _A_1(31) 2 2
20160 26 ⋅ 32 ⋅ 5 ⋅ 7 _A_3(2) ≃ A8 2 2
20160 26 ⋅ 32 ⋅ 5 ⋅ 7 _A_2(4) 3×42 D12
25308 22 ⋅ 32 ⋅ 19 ⋅ 37 _A_1(37) 2 2
25920 26 ⋅ 34 ⋅ 5 2_A_3(4) ≃ _B_2(3) 2 2
29120 26 ⋅ 5 ⋅ 7 ⋅ 13 2_B_2(8) 22 3
32736 25 ⋅ 3 ⋅ 11 ⋅ 31 _A_1(32) 1 5
34440 23 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 41 _A_1(41) 2 2
39732 22 ⋅ 3 ⋅ 7 ⋅ 11 ⋅ 43 _A_1(43) 2 2
51888 24 ⋅ 3 ⋅ 23 ⋅ 47 _A_1(47) 2 2
58800 24 ⋅ 3 ⋅ 52 ⋅ 72 _A_1(49) 2 22
62400 26 ⋅ 3 ⋅ 52 ⋅ 13 2_A_2(16) 1 4
74412 22 ⋅ 33 ⋅ 13 ⋅ 53 _A_1(53) 2 2
95040 26 ⋅ 33 ⋅ 5 ⋅ 11 M**12** 2 2

Close

(Complete for orders less than 100,000)

Hall (1972) lists the 56 non-cyclic simple groups of order less than a million.

Notes

  1. There were several mistakes made in the initial calculations of the Schur multiplier, so some older books and papers list incorrect values. (This caused an error in the title of Janko's original 1976 paper[1] giving evidence for the existence of the group J4. At the time it was thought that the full covering group of M22 was 6⋅M22. In fact J4 has no subgroup 12⋅M22.)

Further reading